Closing Today: HW_7B,7C (8.1) Closing Next Wed: HW_9A,9B,9C Final Exam, Saturday, March 11

1:30-4:20pm
Kane 130

Entry Task: Implicitly differentiate

$$
x^{2}+y^{3}=8
$$

and solve for $\frac{d y}{d x}$.

9.3: Separable Diff. Equations

A separable differential equation is one that can be written as:

$$
\begin{gathered}
\frac{d y}{d x}=f(x) g(y) . \\
\text { (or } \frac{d y}{d x}=\frac{f(x)}{g(y)} \text { or } \frac{d y}{d x}=\frac{g(y)}{f(x)} . \text {). }
\end{gathered}
$$

The idea is that we will separate and integrate.
(But truly we are reversing implicit differentiation).

Example: Find the general explicit solution for

$$
\frac{d y}{d x}=\frac{x}{y^{4}}
$$

Example: Find the general explicit solution to

$$
\frac{d y}{d x}=x^{2} y^{2}+x^{2}
$$

Example: Find the general explicit solution to

$$
\frac{d P}{d t}+4=P
$$

Initial Conditions:

Example: Find the explicit solution to

$$
\frac{d y}{d x}=\frac{\cos (x)}{y} \text { with } y(0)=-5
$$

Old Final Question:

Example: Find the explicit solution to

$$
\frac{d y}{d x}=\frac{x \sqrt{1+x^{2}}}{e^{y}} \text { with } y(0)=0
$$

Another Old Final

Example: Find the explicit solution to

$$
\frac{d y}{d x}-x^{2}=x^{2} y \text { with } y(0)=1
$$

Applications:

1. Law of Natural Growth/Decay:

Assumption: "The rate of
growth/decay is proportional to the
function value."

Example:
A population has 500 bacteria at $\mathrm{t}=0$. The half-life of cesium-137 is 30 After 3 hours there are 8000 bacteria. Assume the population grows at a rate proportional to its size. Find $B(t)$.

Example:

years. Suppose we start with a 100mg sample. The mass function $\mathrm{m}(\mathrm{t})$ decays at a rate proportional to its size. Find $m(t)$.

